Acta Cryst. (1971). B27, 862
The crystal structure of $\mathbf{R b Z n}_{13}$. By Giacomo Bruzzone, Institute of Physical Chemistry, Genoa University, Genoa, Italy
(Received 3 November 1970)

Abstract

The occurrence of intermetallic compounds on the $1: 13$ stoichiometric ratio was investigated for the following binary systems: $\mathrm{Ba}-\mathrm{Be}, \mathrm{Rb}-\mathrm{Zn}$ and $\mathrm{Cs}-\mathrm{Zn}$. The existence of the $\mathrm{RbZn} \mathrm{n}_{13}$ phase, isomorphous with $\mathrm{NaZn}_{13}\left(D 2_{3}\right)$, was recognized ($a_{0}=12.420 \pm 0.003 \AA$). Observed d spacings and intensities are reported together the calculated values. The interatomic distances are briefly examined in order to evaluate the influence of the atomic sizes on the stability of the structure.

The crystal structure of the known MX_{13} intermetallic phases belongs to the cubic $\mathrm{NaZn}_{13}\left(D 2_{3}\right)$ type.

In this structure each Zn_{I} atom is surrounded by $12 \mathrm{Zn}_{\mathrm{II}}$ atoms at the vertices of a nearly regular icosahedron and each Na atom by $24 \mathrm{Zn}_{\text {II }}$ at the vertices of a nearly regular snub cube. By this atomic arrangement, Sanderson \& Baenziger (1953) pointed out that the occurrence of these MX_{13} intermetallic phases would largely depend on the 'size factor', the sub-lattice of the X component determining the radius of the hole where an M atom lies, so that the structure cannot be stable for too large (or small) M atoms. In this way they explained that Ca for the MBe_{13} phases, K for the MZn_{13} phases, and Cs for the MCd_{13} phases were the biggest M components.

However, the existence of the SrBe_{13} compound was reported afterwards (Matjušenko, Verkhorobin \& Karev, 1964); therefore, the examination of other cases with very large M atoms appeared of some interest. To this purpose the $\mathrm{RbZn}_{13}, \mathrm{CsZn}_{13}$ and BaBe_{13} compositions were examined.

Metals of good purity were used [$\mathrm{Ba} 99.8 \% \mathrm{wt}, \mathrm{Rb}$ and Cs 99.98%, Be 99.9% wt and $\mathrm{Zn} 99.999 \%$ wt]. The Zn alloys were prepared by placing stoichiometric quantities of the two components in Pyrex tubes under a low pressure atmosphere of very pure argon and heating to $400^{\circ} \mathrm{C}$. Brittle ingots, which oxidize in the air, were obtained. The walls of the Pyrex containers were unattacked by the alloys.

The formation of a $\mathrm{Ba}-\mathrm{Be}$ compound was investigated by several other methods, but no reaction between the two metals was observed. For the $\mathrm{Rb}-\mathrm{Zn}$ and $\mathrm{Cs}-\mathrm{Zn}$ systems evidence of an intermediate phase was found: in the case of Cs the crystal structure of the compound does not correspond to the NaZn_{13} type and its composition and structure is to be investigated; in the case of Rb the existence of the cubic RbZn_{13} compound, isomorphous with NaZn_{13}, was recognized. The lattice constant is $a_{0}=12 \cdot 420(\pm 0 \cdot 003) \AA$. The diffraction patterns of powder specimens were taken with iron $K \alpha$ radiation using a Debye camera of diameter 114.6 mm .

The intensities of the reflexions were calculated for different values of the y and z atomic parameters in the following respective ranges: $0 \cdot 178 \leq y \leq 0 \cdot 185 ; 0 \cdot 115 \leq z \leq 0 \cdot 120$.

The set of values which gives the best agreement with the observed intensities coincides with that reported by Shoemaker, Marsh, Ewing \& Pauling (1952) for $\mathrm{NaZn}_{13}: y=$ $0 \cdot 180$ and $z=0 \cdot 119$. The final calculated intensities are reported in Table 1 in comparison with the observed ones, which were visually estimated. Calculated and observed values of the d-lattice spacings are also collected in Table 1.
The interatomic distances, reported in Table 2, show that the distance from $\mathrm{Zn}_{\text {I }}$ to each of the 12 Zn II $(2.683 \AA)$ is slightly greater than that known for the 6 shorter ligates in
the elementary metal ($2 \cdot 660 \AA$), while the smallest $\mathrm{Zn}_{\text {II }}-\mathrm{Zn}_{\text {II }}$ distance $(2.608 \AA)$ corresponds to some contraction.

Table 1. X-ray powder data for RbZn_{13}

$\left(\mathrm{NaZn}_{13}\right.$ type structure; $\left.a_{0}=12 \cdot 420 \pm 0.003 \AA\right)$				
$h k l$	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {cale }}$	Iobs
420	2.7755	2.7772	15.0	w^{+}
422	2.5345	2.5352	$45 \cdot 0$	$m s$
440	-	$2 \cdot 1956$	$2 \cdot 7$	
531	2.0985	2.0994	$100 \cdot 0$	es
$600+442$	2.0689	2.0700	31.5	m
620	1.9630	1.9638	$12 \cdot 6$	w
622		1.8724	$0 \cdot 2$	-
444	1.7920	1.7927	$9 \cdot 1$	vw
640	1.7213	1.7223	11.2	w
642	$1 \cdot 6588$	1.6597	$12 \cdot 5$	w
731		1.6169	$1 \cdot 1$	-
800	1.5523	1.5525	11.4	w
$820+644$	1.5055	1.5061	$16 \cdot 8$	w^{+}
$822+660$	1.4640	$1 \cdot 4637$	$9 \cdot 4$	$v w$
$751+662$	1.4345	1.4341	$6 \cdot 2$	vow
840		$1 \cdot 3886$	$2 \cdot 2$	Oow
753	1.3630	$1 \cdot 3633$	39.5	$m s$
842		1.3551	$2 \cdot 4$	m
664	1.3235	1.3240	$3 \cdot 4$	vow
931	$1 \cdot 3025$	$1 \cdot 3020$	27.5	m^{-}
844	$1 \cdot 2675$	1.2676	38.8	m
$10 \cdot 00+860$	$1 \cdot 2420$	$1 \cdot 2420$	38.7	m
$10 \cdot 20+862$	$1 \cdot 2180$	1.2179	32.2	m
951	1-2008	1-2007	28.8	m^{-}
$10 \cdot 22+666$	-	$1 \cdot 1951$	4.9	
953	$1 \cdot 1583$	$1 \cdot 1582$	$80 \cdot 9$	s
$864+10 \cdot 40$	$1 \cdot 1532$	$1 \cdot 1532$	12.8	w
10.42	$1 \cdot 1336$	$1 \cdot 1338$	15.8	w^{+}
880	-	1.0978	$1 \cdot 1$	-
$11 \cdot 31+971$	1.0853	1.0851	77.2	$m s-s$
$10 \cdot 44+882$	1.0816	1.0810	80.5	s
$10 \cdot 60+866$	$1 \cdot 0652$	1.0650	$65 \cdot 2$	ms-s
973	1.0537	1.0535	21.8	$m-w$
$10 \cdot 62$		1.0497	$0 \cdot 2$,
$12 \cdot 00+884$	1.0350	1.0350	$22 \cdot 4$	$m-w$

($v w=$ very weak; $m s=$ medium strong)

Table 2. Interatomic distances in RbZn_{13}

Type of distance	n	$D(\AA)$
$\mathrm{Zn}_{\mathrm{I}}(0,0,0)-\mathrm{Zn}_{\mathrm{II}}(0, y, z)$	12	$2 \cdot 683$
$\mathrm{Zn}_{\mathrm{II}}(0, y, z)-\mathrm{Zn}_{\mathrm{II}}\left(0, z, \frac{1}{2}-y\right)$	2	$2 \cdot 608$
$-\mathrm{ZnI}(0,0,0)$	1	$2 \cdot 683$
$-\mathrm{Zn}_{\mathrm{II}}\left(z, \frac{1}{2}-y, 0\right)$	2	2.720
$-\mathrm{Z} \mathrm{nII}^{(z, 0, y)}$	4	2.782
$-\mathrm{Zn}_{\mathrm{H}}(0, y, \bar{z})$	1	$2 \cdot 956$
- Rb ($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$)	2	$3 \cdot 615$
$\mathrm{Rb}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)-\mathrm{Zn}_{\mathrm{II}}(0, y, z)$	24	$3 \cdot 615$

From the $\mathrm{Rb}-\mathrm{Zn}$ distance value ($3.615 \AA$) a contraction greater than 10% in the atomic radius of Rb metal can be evaluated. This fact and the expansion of part of the Zn bonds indicate that the stability of this type of structure is actually coming down, although the existence of $\mathrm{RbZn} \mathrm{Z}_{13}$ is beyond the suggestion of Sanderson \& Baenziger (1953).

The author wishes to thank Professor A. Iandelli for his constant interest in the work and for the valuable discussions.

References

Matjušenko, N. N., Verkhorobin, L. F. \& Karev, V. N. (1964). Kristallografija, SSSR, 9, 273.

Sanderson, M. J. \& Baenziger, N. C. (1953). Acta Cryst. 6, 627.

Shoemaker, D. P., Marsh, R. E., Ewing, F. J. \& Pauling, L. (1952). Acta Cryst. 5, 637.

Acta Cryst. (1971). B27, 863

The crystallography of nitramine-solvent complexes. I. Crystallographic data on 1,7-diacetoxy-2,4,6-trinitro-2,4,6-triazaheptane (BSX) and on its complexes with acetone, nitromethane, acetonitrile and acetophenone. By G. F. Claringbull, British Museum (Natural History), London S.W.7, England and R. W. H. Small, The University, Lancaster, England

(Received 24 November 1970)

Abstract

Pure BSX crystallizes from acetone at room temperature in tablets, space group $C 2, C m$ or $C 2 / m$ with $a=26 \cdot 24, b=9 \cdot 17, c=6 \cdot 14 \AA, \beta=91 \cdot 5^{\circ}, Z=4$. At $0^{\circ} \mathrm{C}$ acicular crystals in $P 2_{1} / n$ are obtained with $a=14 \cdot 54$, $b=20.47, c=6.38 \AA, \beta=91.5^{\circ}$. Similar acicular crystals are obtained from the three other solvents. Those from acetone, nitromethane and acetonitrile appear to be $1: 1$ solvent/BSX complexes, from acetophenone $1: 2$ solvent/BSX. Optical data are given.

This paper describes the results of investigations carried out some time ago, elsewhere, which have not been previously published; it is presented now because of current interest in these complexes (Hall, 1970) and to serve as an introduction to some later papers describing the structure determination of some complexes of this type.

1,7-Diacetoxy-2,4,6-trinitro-2,4,6-triazaheptane, which has the trivial name BSX, may be crystallized from acetone at room temperature to give flat monoclinic crystals tabular on $\{100\}$ and showing the forms $\{110\}$ and $\{011\}$. The cell dimensions and space group of these crystals were determined by means of oscillation photographs using $\mathrm{Cu} K \alpha(\lambda=1.5418 \AA)$ radiation; these data and the crystal density are given in Table 1.

Table 1. Crystallographic data for pure BSX (tabular crystals)
$\begin{array}{ll}a=26.24 \text { (2) } \AA^{*} & \\ b=9.17 \text { (1) } \AA & \text { Space group } C 2 \text { or } C m \text { or } C 2 / m \\ \text { Density: observed } 1.590(4)\end{array}$ $b=9.17$ (1) A
$c=6.14$ (1) \AA
$\beta=91.5 \quad(2)^{\circ}$ calculated $1 \cdot 592$, for four molecules of $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{10}$ ($M=354$).

* Figures in parenthesis show the standard deviation in the last figure.

Crystallization of BSX from acetone at 0° gave monoclinic crystals acicular along [c] and exhibiting the forms $\{010\},\{110\}$ and $\{101\}$. These crystals were observed to transform to normal tabular BSX if the temperature was raised to $15^{\circ} \mathrm{C}$ while they were in contact with saturated solution. When in the dry condition at $15^{\circ} \mathrm{C}$ the crystals gradually became opaque (pseudomorphic) and suffered a weight loss corresponding to one molecule of acetone per molecule of BSX. Similar acicular crystals were grown from nitromethane and acetonitrile at $0^{\circ} \mathrm{C}$ and from acetophenone at $25^{\circ} \mathrm{C}$. Other solvents including ethyl acetate and ethylidene chloride yielded crystals of normal tabular BSX at $0^{\circ} \mathrm{C}$. The acicular crystals from different solvents were found to have similar cell dimensions and the same space group. Agreement between the density calculated from the cell dimensions and the observed density could only be obtained on the assumption of a molecular weight based on a $1: 1$ solvent/BSX complex in the case of the crystals grown from acetone, nitromethane and acetonitrile and a $1: 2$ solvent/BSX complex for the crystals from acetophenone. The results are summarized in Table 2. It was noted that the space group $P 2_{1} / n$ is incompatible with an ordered structure containing two molecules of acetophenone per unit cell.

Table 2. Crystallographic data for the acicular crystals

Solvent	Acetone	Nitromethane	Acetonitrile	Acetophenone
a (\AA)	14.54 (1)	$14 \cdot 23$ (1)	$14 \cdot 15$ (1)	14.40 (1)
b (\AA)	20.47 (2)	20.24 (2)	20.01 (2)	$20 \cdot 05$ (2)
c (\AA)	$6 \cdot 38$ (1)	$6 \cdot 38$ (1)	$6 \cdot 31$ (1)	6.38 (1)
$\beta\left({ }^{\circ}\right)$	91.5 (2)	$92 \cdot 5$ (2)	$93 \cdot 5$ (2)	$92 \cdot 5$ (2)
Space group	$\mathrm{P}_{1} / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P}_{1} / \mathrm{n}$	$\mathrm{P}_{1} / \mathrm{n}$
Density observed (g. ml^{-3})	$1 \cdot 418$ (4)	$1 \cdot 519$ (4)	1.454 (4)	1.482 (4)
Molecular weight (assumed)	412	415	395	414
Density, calculated $\left(\mathrm{g} \cdot \mathrm{ml}^{-3}\right)$	$1 \cdot 441$	$1 \cdot 501$	$1 \cdot 471$	$1 \cdot 494$

